Kuwait University College of Engineering and Petroleum

جامعة الكويت KUWAIT UNIVERSITY

ME319 MECHATRONICS

Part III: The Senses – Sensors and Signals Lecture 4: Motion Sensors

Spring 2021 Ali AlSaibie

Objectives

- Introduction to the Motion MEMS and environmental sensor expansion board (X-NUCLEO-IKS01A2)
- Know what MEMS are and how they work
- Understand the basic operation of an IMU

X-NUCLEO-IKS01A2 Expansion Board

- It's an add-on board with multiple sensors installed
- Specifically, 4 Sensor ICs:
 - 1. A temperature and relative humidity sensor (HTS221)
 - 2. A pressure sensors (LPS22HB)
 - 3. A 3D Accelerometer and 3D Gyroscope (LSM6DSL)
 - 4. A 3D Accelerometer and 3D Magnetometer (LSM303AGR)
- Yes there are two sensors that give accelerometer data.
 - Can pick just one source of accelerometer
 - Or use two for averaging?

X-NUCLEO-IKS01A2

ME 319

Headers

Accelerometer

- Device that measure static and dynamic forces
- Used to measure
 - Orientation
 - Inertial measurement of velocity and position
 - Vibration or impact

Accelerometer

- Many different accelerometer types
 - Piezoresistive
 - Hall Effect
 - Heat Transfer
 - Optical
 - Servo Force Balance
 - MEMS
- We are using a Microelectromechanical Sensor

Accelerometer Characteristics

- Bandwidth:
 - Readings per second
- Sensitivity:
 - Signal amplitude as result of change in acceleration
- Analog/Digital
 - Analog: direct analog output
 - Digital: ADC on MEMS chip
 - Communication Protocol
 - ADC resolution/range
- Dynamic Range

Accelerometer on both LSM6DSL and LSM303AGR

- 3 Axis separate proof mass MEMs
- Acceleration in one axis induces displacement of mass and capacitive sensors detect differential displacement
- Sitting still, axis collinear to earth gravity will output 1g and 0g on the other two orthogonal axes
- Used as inclinometer (measure title angle, e.g. detect phone in landscape)
- Programmable range
 - ±2g, ±4g, ±8g or ±16g

Accelerometer Orientation

ME 319

Gyroscope

- Device that measure rotation
- Different technologies
 - MEMs
 - FOG: Fiber Optic Gyroscope
 - HRG: Hemispherical Resonator Gyroscope
 - VSG: Vibrating Structure Gyroscope
 - DTG: Dynamically Tuned Gyroscope
 - RLG: Ring Laser Gyroscope (Highly Accurate)

Gyroscope invented by Léon Foucault in 1852 (Replica)

Page: 11

Gyroscope on LSM6DSL

- 3 Axis vibratory MEMs rate gyroscope
- When rotated, Coriolis effect causes a vibration that is detected by a capacitive pickoff
- Output in deg/s or mdeg/s
- Programmable Range
 - ±125, ±250, ±500, ±1000 or ±2000 deg/s

Gyroscope

- MEMS Gyros based on vibratory sensors
 - Vibrating objects undergoing rotations
 - Coriolis force orthogonal to vibrating object
 - $\vec{a}_B = \vec{a}_A + \vec{\alpha} \times \vec{r}_{B/A} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{B/A}) + 2\vec{\omega} \times (\vec{v}_{B/A})_{xyz} + (\vec{a}_{B/A})_{xyz}$

Gyroscope on LSM6DSL

Direction of detectable angular rate (top view)

 $Gyro = \{0, 0, -X\}$

Gyro Drift (Bias or variation)

- Gyro readings drift over time
 - Due primarily to internal temperature changes
- Drift effect is cumulative
- To correct for drift
 - Zero measurements when sensor is stationary
 - Measure drift over time while stationary and use information to correct for drift continuously
 - Gyros may have a temperature sensor that can be used to correct for drift as well
- In practice, a combination of these correction methods is used

Magnetometer

- Device that measures strength of a magnetic field
- Used in
 - Object detection
 - Mining
 - Weather prediction
 - Heading
- Different technologies
 - Inductive Pickup Coils
 - VSM: Vibrating Sample Magnetometer
 - Pulsed Field Extraction Magnetometry
 - Optical Magnetometry
 - Hall Effect Magnetometer
 - Fluxgate Magnetometer
 - And other types

Magnetometer on LSM303AGR

- 3 Axis magnetometer using highly sensitive Hall sensor
- Output magnetic field strength in mGauss (microGauss)
 - Also measured in Tesla sometimes: 1 Tesla = 10,000 Gauss
- Full range of ±50Gauss
- Measures Magnetic North
 - To measure true north, must account for inclination and declination.
 - Magnetic Declination: Angle between magnetic north and true north. Changes with location and time
 - Magnetic Inclination: Measure of vertical intensity of earth's magnetic field. Changes with location (Latitude)
- Accelerometers are used with magnetometers to perform tilt compensation
 - If sensor's compass axis is titled

Declination

• Location and time dependent

Inclination and Declination

• Location dependent

Magnetic North vs True North

- Magnetic North
 - North as given by the sensor
 - The direction of the earth's magnetic field
- True North
 - The direction along the meridian toward the geographic north pole
 - We take magnetic north, compensate for inclination and declination to get true north.

Page: 20

Declination

• Declination Changes with time as well as geographic location

Model by A. Jockson, A. R. T. Jonkers, M. R. Wolker, Phil. Trans. R. Soc. London A (2000), 358, 957-990.

- IMU: Inertial Measurement Unit
- ACC + GRYO = 6DOF IMU
- ACC + GYRO + MAG = 9DOF IMU

• Math, System Dynamics & Control

IMU Calibration

- Gyroscope
 - Calibrate against drift
 - Usually done by zeroing drift while sensor is still
- Accelerometer
 - Calibrate against offset
 - Done by placing sensor still at 6 different cube faces
- Magnetometer
 - Calibrate against extent and strength of magnetic filed
 - Usually done by rotating the sensor around 3 axis in both directions (6 rotations)
- Some sensors have onboard calibration routines
- Others require calibration to be done at software

Pressure Sensor

- Peizoresistive Pressure Sensor
- Used for
 - Altitude measurement
 - Navigation Aid
 - Weather forecast
 - Vertical Velocity

Pressure Sensor on LPS22HB

- Outputs absolute pressure in hPa (hectopascal). 1 hPa = 100Pa
- Altitude Above Sea Level

Part III: THE SENSES – L4